不得不说,“ai”芯片仿佛某种天谴之物般,哪怕这位神孽不断地高歌“创生圣言”,赋予林奇充足而庞大无比的创造力,甚至让他时刻都有着神明的错觉,那ai芯片在记忆宫殿里依旧艰难难产着。
这种奥妙至巅峰的作品,一旦出世便能够影响整个魔法文明的存在,林奇脑海里对他的构想,终究是轻微了。
放在外人看来,林奇的所作所为,就像是将一副从a到k,包括花色顺序排好的扑克牌,随意递给十余位路人切牌洗牌,随即他再接过来随便洗上十余秒,然后将所有的牌序恢复如初一样。
甚至就像是随手递给一个初学者拧乱的魔方,结果对方随手便复原了出来。
这些都并非不可能,而是出现的概率太小。
林奇眼下的“ai芯片”,也是如此。
就像是无数随意的乱洗牌里,慢慢地揉捏出规律的杰作来,也就大自然的鬼斧神工,才能担得起这一名字。
很快。
随着整个芯片大体架构的成型时,林奇也开始陷入一种莫名的震惊之中!
一种类似谷歌曾经开发来alphago的人工智能芯片?
这让林奇忍不住想起博识图书馆地底奎因殿下的试炼,便是以围棋智力压服对手便可以拿到预言的线头。
曾经的逻辑,仿佛在这一刻重新汇聚起来。
tpu?
这款谷歌17年专门为了机器学习而开发定制的专用集成电路(asic)仅仅用了一年便转移到云端作为商用,而它也遵循着cpu与gpu的路线。
tpu。
中文名字,张量处理单元。
说来广大群众第一次接触张量这个名字,可能还是靠着看时间简史之类的科普著作。
张量,来自于数学,以多线性方式将几何向量、标量和其他类似对象映射到结果张量的几何对象。
当时林奇第一次也没听懂。
不过他看了看还是大致明白过来,所谓张量,就是一个广义的矩阵。
高中学习的向量是一维矩阵,数字的立方体是三维矩阵,甚至耽搁数字也是矩阵。
这里冥冥中已经和那神经网络算法所切合,而张量之所以与纯矩阵有曲风,便在于他拥有动态特征——生活在结构中,与其他数学实体相互作用。
而计算机科学里,张量则是一个n纬矩阵。
林奇默默在纸面上重新打版,刚刚他已经将整个神秘的控制知识拱手托出,与着神孽交换。
至于对方是否会靠此找到成神的专门要是与切记,他也都无所谓。
火都烧到眉头了,谁还会估计明天的饭菜热不热。
而随着书写,林奇的板书笔法也越发飘忽——
训练后的神经网络以标签或预估值对数据分类,此乃推理。
因此每个神经元都需要进行计算。
输入数据乘以权重,表示信号强度。
结果相加聚合神经元状态。
使用激活函数调节神经元参数活动。
如此一步接着一步,连绵不绝。
按理说,三个输入而只有两个神经元与一个单层神经网络的话,权重与输入便要六次乘法……