<

294 天基电网的瓶颈(2 / 2)

激光输电差点就无疾而终,论证时还有人说十千瓦不如微波输电呢,那个转化率还高些。

但微波其实也有着难以攻克的缺陷。

现代卫星采用的信号节能方案,基于波的干涉现象,原理不赘述了,反正结果是可以通过这种现象,实现定向输出电信号(电磁波),在同步轨道,只要把干涉做到球面3,就能覆盖几乎半个行星。

可要实现点对点的传输,3就远远不够了,哪怕把增强范围集中在十万分之一个球面上,只要有上百公里距离,散射程度也远远大于卫星的太阳能板面积……何况太阳能板还不能吸微波,得另起一套接收系统,那还不如烧开水。

因此技术层面上,卫星间的微波能量传输,就根本没有实用的可能。

回到现场,激光能量平台于九月下旬,被旱魃货运组当货物送抵绕月轨道,再由宇航员驾驶的应龙二号飞船抓取,投送至两千公里高度,飞过月宫和月表二号基地预定地点的上空。

二号基地预定地点只是个概念性的东西,具体会不会有,还得看地面怪兽应对的局面,和月宫人员、机器人现场勘察的结果。

把能量平台验证机送到轨道,宇航员根据地面指示,出舱对激光器进行调整。

调整过后,激光打到月表的是一个约五平米的光斑。

内行一看光斑大小就知道,这是用来烧开水的。

不过月表暂时没有聚光发电站,能量平台只能闲着。

月宫,经过几个月的建设,已经建成两个氧化铝玻璃温室,单温室面积03公顷,内空最低高度7米,两温室共用一套五段式气压出入系统。

与地表温室的情况大相径庭,月表温室外面还有一层由“砖墙”加“防弹布”构成的电动折叠外壳,外壳的内层还镀了一层高热反射率材料,在月表天黑后减少室内热量流失。

太空里,热与电是一切设备运行的基础,需要不停的在散热和保热之间切换,温室也一样。

为了能有效利用自然光,同时又不把内部的作物烧死,地表研究人员下了很多功夫,其中有不少是怪兽危机之前的积累……毕竟c国的传统就是人到哪就要把菜种到哪,月表,他们几年前就来过,几十年前就从a国那获赠过一克月壤。

除了氧化铝玻璃层和折叠外壳,月宫温室还有很多名堂。

每个温室的尖顶,有四块特殊氧化铝玻璃,它们不是平面,在日照最强的时候其它外壳全部关闭,温室只由这四块为全温室提供光照。

另外,整个氧化铝玻璃层内,还有一层比较薄的含铅玻璃及玻璃镀层,主要用于抗辐射,并控制部分紫外线通量。

然后,温室侧面,每15米高度,有一块截面为特殊几何结构的横条式人造水晶,在侧面外壳开启的情况下,能够为分层种植的植物提供不要电的侧面补光。

不过现在压根没有分层种植,植物学家们还在改造月壤并进行小规模种植和记录,后面温室结构或许还要进行微调。

月壤改造项目相对顺利,两个温室一共囤积了一千吨出头的初级土壤,可以满足基本的种植需要。

包含未来空间站送来的金汁,拉便便的生物数量要进行大规模种植还是远远不够,囤积肥力还有很多额外工作。

现阶段囤积肥力主要依赖微生物分解之前积累的作物不能食用部分,人便便还是配合化肥等材料,把更多月壤改造成初级土壤。

顺便一提,月宫温室的地下有“砖墙”加“防弹布”构成的地板,把内部人工大气环境和自然月壤隔离开来,内部有约一米深等待改造的月壤,它们与地板共同形成月宫温室的地基。

预计室内月壤全部改造完成后,能够获得共计一万五千吨初级土壤,届时在完全没有母星补充化肥的情况下,也能够通过轮耕与月宫的生物、化学手段,长期维持比较稳定的种植产量。

其实按早期技术积累和方向,水培技术在太空更容易实现和管理。可一旦涉及永续,水培就不是好主意了。

月壤的确不能直接种植,但是月壤中的矿物成分一旦被分解出来,一样能给植物生长提供支援,这些物资不从月表获取就得从地表运,水培并不会减少物质消耗总量。微生物改造总比另外设置一套月壤分解装置更靠谱吧,而用微生物改造方案,就确定了基本只能使用土壤培育,水培暂时只能在实验室里用。

能看到,在“永续”方面,月宫的进度不错。

地表现在已经在选人,等温室的第一季作物产量出来,就要划定今年后几个月和明年初进入月宫的人员名单。

人员之前,首先要送来月宫的,是“文明”。

<scrpt></scrpt>