换而言之。</p>
按照孤点粒子的情况来推测,后两个阶段应该也有对应的...唔怎么说呢,应该描述为有对应的物理现象?</p>
剩余的两个阶段徐云也花了一些零散时间研究过,奈何由于能力问题,他一直没有找出正确的解——如今徐云的能力大概在教授之上院士之下,而这两个阶段中最简单的第二阶段也属于菲尔兹奖...也就是数学最高奖的难度层次了。</p>
至于第三阶段的那个神秘比值....徐云敢肯定,它一定是一项可以震动世界的结果,保守估计都和相对论是同一级的,属于徐云目前哪怕花掉所有思维卡都不可能触及的高度。</p>
至少....徐云得和老爱见过一次面,才有可能讨论那事儿。</p>
当然了。</p>
没结果归没结果,徐云倒也不至于一点收获都没有。</p>
譬如在解方程的过程中他就发现,第二阶段的最终成果应该与某个机理有关。</p>
因为徐云在期间发现了温度和类似层状结构的表达式,显然是某种物理现象的新媒介,而且多半和晶体有一定关系。</p>
所以在得知了自己答辩委员会的评审阵容之后,徐云便把主意打到了第二阶段的成果上。</p>
他有一种预感,第二阶段的这个未必能够给他带来多少奖项上的荣誉,但很可能会产生某种更大的影响力。</p>
当然了。</p>
即便徐云的猜测有误也没事儿,徐云手上还有冷聚变的相关研究做打底呢。</p>
随后徐云深吸一口气,将注意力放到了面前的算纸上。</p>
只见他拿起笔,很快在纸上写下了那道方程:</p>
4D/B2=4(√(D1D2))2/[2D0]2=√(D1D2)/[D0]=(1-η2)≤1.......</p>
{qjik}K(Z/t)=∑(jik=S)∏(jik=q)(Xi)(ωj)(rk);(j=0,1,2,3…;i=0,1,2,3…;k=0,1,2,3…)</p>
{qjik}K(Z/t)=[ xaK(Z±S±N±p),xbK(Z±S±N±p),…,xpK(Z±S±N±p),…}∈{DH}K(Z±S±N±p).......</p>
(1-ηf2)(Z±3)=[{K(Z±3)√D}/{R}]K(Z±M±N±3)=∑(ji=3)(ηa+ηb+ηc)K(Z±N±3);</p>
(1-η2)(Z±(N=5)±3):(K(Z±3)√120)K/[(1/3)K(8+5+3)]K(Z±1)≤1(Z±(N=5)±3);</p>
W(x)=(1-η[xy]2)K(Z±S±N±p)/t{0,2}K(Z±S±N±p)/t{W(x0)}K(Z±S±N±p)/t...........</p>
最后的一个公式...或者说一个数值为:</p>
Le(sx)(Z/t)=[∑(1/C(±S±p)-1{∏xi-1}]-1=∏(1-X(p) p-s)-1。</p>
这是一个标准的正则化组合系数和解析延拓方程组,涉及到了无限多层次的对称与不对称曲线曲面的圆对数与拓扑。</p>
其中第一阶段是一到三行,通过∑(jik=S)∏(jik=q)(Xi)(ωj)可以确定曲面与经线成了某个定角,从而假设定模型λ=( A, B,π),以及观测序列O =( o1, o2,..., oT )。</p>
按照上面的逻辑推导,就可以得出孤点粒子的概率轨道。</p>
而徐云现在要做的则是.....</p>
推导第三到第五行,也就是第二阶段。</p>
徐云解答第二阶段的思路是讨论存在性问题,再将现在的收敛半径变为无穷大,从而在整个实数线上收敛。</p>
如今在陈景润思维卡的加持下,徐云对于自己思路的把握又高了几分——这个方向没错。</p>
随后他顿了顿,继续推导了起来。</p>
“已知允许幂级数中的变量x取复数值时,幂级数收敛的值在复平面上形成一个二维区域,就幂级数来说,这个区域总是具有圆盘的形状......”</p>
“然后利用高斯函数的Fourier变换 F{e?a2t2}(k)=πae?π2k2/a2,以及Poisson求和公式可以得到......”</p>
“考虑积分g(s)=12πi∮γzs?1e?z?1dz,其中围道应该是limk→∞gk(s)=g(s).....”(这些推导是我自己算的,这部分我不太确定正不正确,用了留数定理和梅林积分变换,要是有问题欢迎指正或者读者群私聊我,这种涉及到比较多数学问题的推导不是我的专精方向)</p>
众所周知。</p>
解析延拓就是指两个解析函数 f1(z)与 f2(z)分别在区域D1与D2解析,区域D1与D2有一交集 D,且在区域D上恒有 f1(z)=f2(z)。</p>
这时便可以认为解析函数 f1(z)与 f2(z)在对方的区域上互为解析延拓,同时解析函数 f1(z)与 f2(z)实际上是同一函数 f(z)在不同区域的不同表达式。</p>
举个最简单的例子。</p>
由幂级数定义的函数 f1(z)=∑n=0∞zn在单位圆|z|</p>
所以我们说函数 f(z)=11?z是幂级数 f1(z)在复平面上的解析延拓。</p>
非常简单,也非常好理解。</p>
徐云在第一阶段得到的广义积分在0c||Re(s)</p>
“然后再引入Γ函数,它是阶乘函数在实数与复数域上的扩展,当它的宗量为正整数时,有Γ(n)=(n?1)!......”</p>
“这部分似乎可以用渐进概念来做个近似......”</p>
“如果近似到场论的话,相当于量子化自由Klein-Gordon场时,(+m2)?(x)=0,那么场算符就是?(x)=∫d3p(2π)312Ep(ape?ipx+ap?eipx).......”</p>
“然后再把场算符代算回来......”</p>
半个小时后。</p>
徐云忽然停下了笔,眉头微微皱了起来:</p>
“激发电场.....果然是和晶体有关。”</p>
此时此刻。</p>
徐云面前的算纸之上,赫然正写着几个Nabla算符。</p>
要知道。</p>
他之前虽然对推导过程进行过渐进处理,但本身是没有引入激发电场概念的,更别说徐云之前还完成了代算。</p>
也就是说这几个Nabla算符并不是渐进项解开后出现的错误算子,而是与方程自身有关的参数。</p>
更重要的是.....</p>
随着这一步方程的解开,公式中出现了一个新的并立项。</p>
它叫做.....频率,计量单位是meV。</p>
频率、激发电场、加上徐云最早独力发现的类似层状结构的表达式......</p>
第二阶段成果的物理意义,似乎已经呼之欲出了。</p>
想到这里。</p>
徐云重新拿起边上的茶杯猛灌了一大口浓茶,重新提笔计算了起来。</p>
“先做个实空间中的局域连续函数,然后把低能有效拉格朗日量根据对称性的要求表达成Φ的泛函......”</p>
“左右乘e?2πjmt/T0并在(?T02,T02)上积分,左侧显然为1,而右侧由正交性不难得到结果为T0cm......”</p>
“然后再运用个搞积技巧.....”</p>
“当 Re(s)>1时,∫x?sdx在 x→0+处有可能有奇性,比如∫x?2dx=∫d(?x?1)=?x?1+C......”</p>
“叽里咕噜.....1+2+3=6......”</p>
又过了二十多分钟。</p>
在陈景润思维卡即将到期之际,徐云整个人的肩膀顿时一松,吧嗒一下靠到了椅背上。</p>
此时此刻。</p>
他面前已然堆满了书写的密密麻麻的算纸,上头尽是各种对于普通人如同魔文的推导过程。</p>
“终于搞定了,果然是它.......”</p>
.......</p>
注:</p>
暗示的很清楚了,有没有同学猜到是啥?</p>
玩个小游戏,如果有人猜中答案,下本书可以定制一个主角团的角色,当然名字不能太离谱,多人猜中按照最早楼层的那个为准。</p>