又过一日,沈奇再次站上跑道,男子1万米决赛即将鸣枪。
砰!
枪响,比赛开始。
沈奇强势起跑,志在必得。
15000点学霸积分啊,不要白不要。
5000米+1万米的双料冠军,如果短短几天刷到3万点学霸积分,那这笔买卖很划算。一篇数学SCI论文乘以20的翻倍奖励,也是3万点学霸积分奖励,但审核、发表的周期太久了,得好几个月。
从5000米决赛中吸取教训,单枪匹马作战的沈奇知道必须一出发就处在领跑位置,否则又会被其他大学的小集团所针对。
主动权一定要掌握在自己手中。
前10圈,沈奇占据1道内侧最前位置,领跑在前。
跑进节奏控制的不错,沈奇回头一瞅,大部队紧随其后,保持队形匀速流动。
纳维叶-斯托克斯方程!
沈奇的脑海中忽然冒出这么一个概念。
纳维叶-斯托克斯方程以数学语言描述流体运动,是2000年七大数学难题中的一个。
赛道上的沈奇回眸一望,身后的十几位对手在他眼中幻化为一种特殊的流体,人肉流体。
这些人形流体按某种特殊规律,绕环形轨迹流动。
纳维叶-斯托克斯方程几种稳定化有限元的算法。
非常奇妙啊!
沈奇越跑越兴奋,精神上的亢奋让他忘记了身体上的疲劳。
刷!
一位选手突然加速,超了沈奇。
沈奇并不慌乱,甚至还有一点激动。
他意识到根据稳定化有限元算法,速度在节点处形成了数组,纳维叶-斯托克斯方程的有限元逼近,必然造成选手队伍的局部波动。
这个时候该如何处理?
很明显,做一个局部高斯积分即可。
沈奇跟跑两圈之后发力,反超领跑选手,再次占据第一位置。
“灵感如泉涌!”
跑道上的沈奇不知疲倦的奔跑,领先优势越来越明显,他已领先第二名十米以上。
沈奇只想早点完成比赛,他得记录下这个忽然产生的纳维叶-斯托克斯方程灵感,然后回寝室查查物理文献。
纳维叶-斯托克斯方程应用广泛,了解流体在物体表面的流动形式,人类就可以改进船舶与飞机的设计。也可以让医学家更加深入了解心脏的工作方式,以及血液在我们动脉和静脉中的流动形式,这或将导致新型药物、医疗器械的诞生。
只有一个问题尚待解决,无人能够在原则上证明纳维叶-斯托克斯方程是否有解。
物理学家们在纳维叶-斯托克斯方程面前缴械投降,求解纳维叶-斯托克斯方程的历史性任务交接给了数学家。
带着巨大的领先优势,沈奇距终点越来越近。
在这一枪万米跑的过程中,沈奇确定了一个短期主攻方向,数学物理。